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I) Introduction:

The dataset, CDI2, consists of numerical data that consists of 7 variables, with a sample size of 440 observations.
Population (X)) is the estimated total population, Income (X,) is the total personal income in dollars, Physician is
the number of professionally active non-federal physicians, Bed (X;) is the total number of beds, cribs, and
bassinets, Area (X,) is the land area in square miles, Senior (X;) is the percent of population aged 65 years old or
older, Crime (Xg) is the total number of serious crimes, and. Our goal is to predict the number of active physicians
in a county (Y) using a multiple linear regression model. With 6 variables available to predict Y, we will
determine which variables are the most significant to build the best model. By comparing each model, we will
determine which multiple regression model is the best to predict the number of physicians.

II) Summary:

We first conduct exploratory data analysis to inspect the individual data types of each variable, as well as the initial
relationship between each predictor variable and the response variable. We observed five number summaries,
means, and standard deviation values. We observe high standard deviations for each variable except for Senior,
indicating that values are generally more spread out away from the mean. We also observe extremely high
maximum data points compared to the third quartile of each variable, indicating the presence of possible outliers
in our dataset.

We also analyze the relationship between each variable with one another by use of a correlation plot and a correlation
matrix. From both the correlation plot and the correlation matrix, we see that there is a strong positive linear
correlation between response Physician and predictors Population, Bed, Crime, and Income, indicating that these
predictors could be the best to fit a multiple linear regression model. However, we also observe strong correlation
between the predictor variables, indicating that there may be high multicollinearity present, which could make
interpretation of coefficients used in the regression model more difficult.

I1I) Variable Selection:

We will be using base multiple linear regression model:

Y. = BO+81X1+[32X2 + € i = l..n

We can use the extra sum of squares to determine the coefficients of partial determination to measure the effect of an
added predictor variable in addition to other variables (in our case, the base model). Looking at the table with all
of the coefficients of partial determination, we see that adding the variable Bed is the best for the multiple linear
regression model, as the highest was Yzm,z = (.554. Furthermore, a General Linear F Test to test the hypotheses
Hy: [1;=0vs. Ha: (5 # 0, with a significance level of a = 0.0002. Thus, we reject the null hypothesis and we
conclude that the full model, or the model with the predictor Bed is a better fit.

IV) Model Comparison and Fit:

We are given two proposed models:

Proposed Model 1) YL,

Proposed Model 2) Yi

BO +BlX1+ BZX2+BSX5+ € i = 1l.n
B, + B, (X /X)) + BX, +BX, + e = 1l.n

Looking at the R?, or coefficient of determination values for each model, we can see that Model 1 has a higher R? value of

0.955. Since our number of regressors is the same in both models, we do not need to use the R?,; value to compare. Thus,

we will continue and inspect Model 1 further by performing diagnostics.

V) Model Diagnostics:

Using the Proposed Model 1, with Population, Income, and Bed as predictors for our best model, we performed model
diagnostics to see if the assumptions of the Normal linear regression hold, as well as detecting the presence of

outliers and high leverage points in our dataset. The assumptions we test for are:
1) Error terms are independent



2) Error terms are normally distributed
3) Error terms have constant variance (homoscedasticity)

When assessing independence of error terms, we created a residual index plot, and observed a pattern present in the
plotted values: as index increases, errors become more centered around 0. This indicates that the error terms may
not be independent of each other.

When assessing normality of error terms, we created a Normal Q-Q plot, and observed that plotted values do not follow
the straight line. Although error terms seem to be symmetrical about the center, plotted values show greater
deviations at the ends. This, in addition to the small Shapiro-Wilks p-value, suggests a non-Normal distribution.

When assessing constant variance of error terms, we created a plot of residuals vs. fitted values, and observed that
residuals seem to cluster around smaller fitted values, before becoming less frequent as fitted values become
larger. We also observe the presence of possible outliers in this plot, as there seem to be a few points that deviate
from the mean. In addition, the small Fligner-Killeen Test p-value indicates there is not constant variance.

To detect for possible outliers, we looked for any studentized residuals greater than 3 and high leverage points. We found

12 possible outliers in our dataset with the studentized residuals and 55 possible high leverage points. We will be
considering the studentized residuals as our outliers as it removes a lesser proportion of the dataset, at 2.727%.

We can also assess if the model has multicollinearity by looking at the VIFs, or variance inflation factors. The variables
Population and Income have VIFs that are higher than 10, thus the Population and Income variable are likely
correlated with other predictor variables in the model. A solution would be to remove the variables from the
model.

Based on our diagnostics, we conclude that the assumptions of the Normal linear regression do not hold for our chosen
model. However, we will continue to use this model for interpretation and prediction.

V1) Interpretation:

When estimated total population increases by 1 unit, we expect the number of physicians to decrease by -0.002 on
average, holding all other predictor variables constant.

When total personal income increases by 1 unit, we expect the number of physicians to increase by 0.138 on average,
holding all other predictor variables constant.

When total number of beds, cribs, and bassinets increases by 1 unit, we expect the number of physicians to increase by
0.487 on average, holding all other predictor variables constant.

We do not interpret our intercept of -89.105, as in reality, it would be impossible to have a negative number of physicians.

The R?value of 0.955 indicates that 95.5% is the proportionate reduction of total variation in Y associated with the use of
the set of X variables, Population, Income, and Bed. The partial coefficient of determination Y23“’2 =0.554
indicates the proportion of decrease in SSE when the X; variable is added to the model with X, and X,.

We are 95% confident that the estimated coefficient for population is between (-0.002, -0.001), the estimated coefficient
for income is between (0.121, 0.155), and the estimated coefficient for bed is between (0.429, 0.544). Since all
coefficients do not include 0, the estimates are significant.

VII) Predicti

?i = —89.105 - 0. 002X + 0.138X + 0.487X_ , X, =394000, X,= 8500, X; =300

Using the estimated coefficients, we found the predicted value for physicians to be 509.559, or 509 physicians.

VIII) Conclusion:

Based on our findings, we found the multiple linear regression model between response variable Physician and predictor
variables Population, Income, and Bed to be our statistically best model, with its high R* compared to other
models.

However, limitations of our model include strong multicollinearity, as well as the presence of outliers and high leverage
points, that could make interpretation of our model difficult.



Tables/Plots

I) Data Preparation:
X, = Population
X,=Income

X;=Bed

X,= Area

X;5= Senior

X¢= Crime

i) Correlation matrix:

Numerical Matrix:

physician area population senior bed crime income
physician 1.000 0.078 0.940 -0.003 0.950 0.820 0.948
area 0.078 1.000 0.173 0.006 0.073 0.129 0.127
population 0.940 0.173 1.000 -0.029 0.924 0.886 0.987
senior -0.003 0.006 -0.029 1.000 0.053 -0.035 -0.023
bed 0.950 0.073 0.924 0.053 1.000 0.857 0.902
crime 0.820 0.129 0.886 -0.035 0.857 1.000 0.843
income 0.948 0.127 0.987 -0.023 0.902 0.843 1.000
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ii) Numerical Summaries

a. Five Number Summary

physician area population senior bed crime income
min 39.0 15.0 100043 3.000 92.0 563 1141
Ist Qu. 182.8 451.2 139027 9.875 390.8 6220 2311
Median 401.0 656.5 217280 11.750 755.0 11820 3857
3rd Qu. 1036.0 946.8 436064 13.625 1575.8 26280 8654
Max 23677.0 20062.0 8863164 33.800 27700.0 688936 184230
b. Mean and Standard Deviations
Physician Area Population | Senior Bed Crime Income
Mean 988.0 1041.4 393011 12.170 1458.6 27112 7869
Standard 1789.75 1549.922 601987 3.993 2289.134 58237.51 | 12884.32
Deviation
II) Variable Selection
i) Coefficients of Partial Determination
2 2 2 2
Y 31,2 Y 41,2 Y 51,2 Y 6/1,2
0.554 0.029 0.004 0.007
ii) Summary of R* Values
Model 1 Model 2
R? 0.955 0.912
R2, 0.955 0.911




iii) Estimation of Coefficients

Intercept Population Income Bed
Model 1 -89.105 -0.002 0.138 0.487
Intercept Population Income Senior
Density =
Population/Area
Model 2 -170.574 0.096 0.127 6.340

iv) Confidence Interval for Model 1

"Ihat, (Population) (-0.002, -0.001)

"hat, (Income) (0.121, 0.155)

"That; (Bed) (0.429, 0.544)




IIT) Model Diagnostics

i) Assessing Independence

Residual Index plot
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ii) Assessing Normality

Normal Q-Q Plot
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iii) Assessing Constant Variance

Errors vs. Fitted Values
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iii) Hypothesis Tests for Constant Variance and Normality of Errors

Fligner-Killeen Test Shapiro-Wilks Test
P-value < 0.00000000000000022 < 0.00000000000000022
iv) VIFs - Variance Inflation Factor
Population Income Bed
Variance Inflation 49.365 38.877 6.977
Factor - VIF




v) Outliers

1) Method: Studentized Residuals

phySlClall area populat on  senior bed criume mcome row
23677 4060 8863164 9.7 27700 688936 184230 1
15153 946 5105067 124 21550 436936 110928 2
3823 614 2111687 125 9490 193978 36872 8
5280 2126 1507319 11.1 4009 124959 35843 12
2456 1209 1255488 20.7 5543 107386 28066 21
1833 1974 863518 24.4 3164 76142 23141 34
1620 280 851659 26.0 4458 62344 18404 36
4635 495 757027 10.2 1507 34754 22772 48
5444 81 736014 13.7 6203 87355 12706 50
4761 47 723959 145 3640 71234 20656 53
5674 59 663906 121 6154 68808 15369 67
1944 291 181835 10.7 1496 15477 3498 258
ii) Method: High Leverage Points
physician area population senior bed crime income row
23677 4060 8863164 9.7 27700 688936 184230 1
15153 946 5105067 12.4 21550 436936 110928 2
7553 1729 2818199 7.1 12449 253526 55003 3
5905 4205 2498016 10.9 6179 173821 48931 4
6062 790 2410556 9.2 6369 144524 58818 5
4861 71 2300664 12.4 8942 680966 38658 6
4320 9204 2122101 12.5 6104 177593 38287 7
3823 614 2111687 12.5 9490 193978 36872 8
6274 1945 1937094 13.9 8840 244725 34525 9
4718 880 1852810 8.2 6934 214258 38911 10
6641 135 1585577 15.2 10494 109148 26512 11
5280 2126 1507319 11.1 4009 124959 35843 12
4101 1291 1497577 8.7 3342 77009 37728 13
2463 20062 1418380 8.8 3349 83110 23260 14
5620 458 1412140 15.6 8132 73150 29776 15
5158 824 1398468 12.5 4152 35825 35398 16
5281 730 1336449 17.4 8436 50186 27639 17
3021 911 1321864 10.8 3904 66723 32071 18
6147 287 1287348 14.2 5200 43203 40782 19
3169 738 1279182 10.6 3284 107338 28331 20
2456 1209 1255488 20.7 5543 107386 28066 21
3062 1247 1185394 9.9 4086 133098 18383 22
1385 7208 1170413 13.2 2435 95494 20114 23
4020 873 1083592 10.9 3254 50964 29131 25
3706 557 1032431 11.3 5395 71753 24474 27
1194 508 993529 13.1 1056 42595 24062 28
4577 433 874866 14.4 3540 37118 29159 32
1833 1974 863518 24.4 3164 76142 23141 34
2417 626 827645 13.3 2494 44374 26768 39
2489 755 826330 10.4 4918 67032 15229 40
3226 234 825380 15.3 2279 28521 26602 41
1694 396 818584 6.5 135 30202 23738 42
1761 720 803732 10.9 1781 51243 20514 44
2936 396 797159 11.7 4654 61004 15264 45
2157 334 781666 8.7 1842 29708 20927 46
2811 126 778206 12.7 4841 75595 19084 47
4635 495 757027 10.2 1507 34754 22772 48
5444 81 736014 13.7 6203 87355 12706 50
2094 737 725956 8.5 2076 58610 11179 52
4761 47 723959 14.5 3640 71234 20656 53
1269 599 692134 14.0 641 46789 16244 57
3237 483 678111 15.0 2425 20335 19300 58
5674 59 663906 12.1 6154 68808 15369 67
2532 1113 651525 14.0 4602 55604 12134 68
1814 449 649623 12.3 1642 30473 18721 69
3368 529 648951 10.0 5757 93025 14808 70
3674 61 606900 12.8 4262 64393 14325 73
795 1013 591610 8.1 1650 54002 6830 76
2293 502 510784 11.6 3847 45237 9963 90
2500 181 496938 13.0 4018 54238 8238 95
2867 153 467610 13.8 3652 37466 10360 102
1147 469 421353 10.6 1599 12147 13281 117
4189 62 396685 16.6 7814 64103 7185 123
311 1569 383545 10.1 860 26712 3413 128
1001 520 230096 12.3 488 9460 8638 206




R Appendix

knitr: :opts_chunk$set (echo = FALSE, comment = NA)
options(scipen = 999) #Remove the scientific notation
#### LOADING IN DATASET ####
library(readr)
CDI2 <- read_csv("CDI2.csv")
#### SUMMARY ####
# Correlation matriz
library(corrplot)
round (cor (CDI2),3)
corrplot (cor(CDI2))
# Numerical Summaries
summary (CDI2)
lapply(CDI2, sd)
#### MODEL COMPARISON & FIT ####
model_1 = lm(physician ~ population + income + bed, data = CDI2)
CDI2$pdensity = CDI2$population/CDI2$area
model_2 = 1m(physician ~ pdensity + senior + income, data = CDI2)
summary (model_1)
summary (model_2)
#### DIAGNOSTICS ####
# Assessing Independence
plot(model_1$residuals,main = "Residual Index plot",xlab = "Index",ylab = "residuals",pch = 19, col = "purple"
abline(h = 0, 1ty = 2)
# Assessing Normality
# Normal @-{ Plot
qgnorm(model_1$residuals)
gqline(model_1$residuals)
# Shapiro-Wilks Test
the.SWtest = shapiro.test(model_1$residuals)
the.SWtest
# Assessing Constant Variance
# Plotting Errors vs. Fitted Values
library(ggplot2)
CDI2$ei = model_1$residuals
CDI2$yhat = model_1$fitted.values
gplot(yhat, ei, data = CDI2) + ggtitle("Errors vs. Fitted Values") + xlab("Fitted Values") +
ylab("Errors") + geom_hline(yintercept = 0,col = "purple")
# Formal Testing
Group = rep("Lower",nrow(CDI2))
Group [CDI2$physician < median(CDI2$physician)] = "Upper"
Group = as.factor(Group)
CDI2$Group = Group
the .FKtest= fligner.test(CDI2$ei, CDI2$Group)
#### OUTLIERS ####
# Leverage
p=4
h = hatvalues(model_1)
n = 440
leverage = which(h > (p+1)/n)
# Studentized Residuals
sei = rstudent(model_1)
outliers = which(abs(sei) > 3)
# Table of outliers and leverage points
CDI2 <- read_csv("CDI2.csv")
outlier_table = CDI2[outliers,]
outlier_table$row = outliers
leverage_table = CDI2[leverage,]



leverage_table$row = leverage
knitr::kable(outlier_table)
knitr::kable(leverage_table)



# find the best variables to include using the partial R°2

CDI2 <- read_csv("Downloads/CDI2.csv")

base_model <- lm(physician ~ population + income, data = CDI2)

modell <- lm(physician ~ area + population + senior + bed + crime + income, data = CDI2)
model2 <- lm(physician ~ population + income + senior, data = CDI2)

model3 <- lm(physician ~ population + income + crime, data = CDI2)

model4 <- 1m(physician ~ population + income + bed, data = CDI2)

model5 <- 1m(physician ~ population + income + area, data = CDI2)

anova(base_model)

ybar = mean(CDI2$physician)
SSTO = sum((CDI2$physician - ybar)"2)
SSE = 140967081

# partial senior
SSR_senior_population_income = sum((fitted(model2) - ybar) 2)
SSR_population_income = sum((fitted(base_model) - ybar) 2)

# partial crime
SSR_crime_population_income = sum((fitted(model3) - ybar)"2)

# partial bed
SSR_bed_population_income = sum((fitted(modeld) - ybar) 2)

# partial area
SSR_area_population_income = sum((fitted(model5) - ybar)"2)

# partial senior given population and income

#ssr(senior/population, income)/sse(population, income)

#ssr(senior/population, income) = ssr(senior,population,income)-ssr(population, income)
round ((SSR_senior_population_income - SSR_population_income)/SSE,3)

# partial crime given popualtio and income

#ssr(crime/population, income)/sse(population, income)

#ssr(crime/population, income) = ssr(crime,population,income) - ssr(population,income)
round ((SSR_crime_population_income - SSR_population_income)/SSE,3)

# partial bed given population and income

#ssr(bed/population, income)/sse(population, income)

#ssr(bed/population, income) = ssr(bed,population, income) - ssr(population,income)
round ((SSR_bed_population_income - SSR_population_income)/SSE,3)

# partial area given pouplation and income

#ssr(area/population, income)/sse(population, income)

#ssr(area/population, income) = ssr(area,population,income) - ssr(population,income)
round ((SSR_area_population_income - SSR_population_income)/SSE,3)

#
# we want to check tf the model with bed is better than the base model



reduced_model <- lm(physician ~ population + income, CDI2)
full_model <- lm(physician ~ population + income + bed, CDI2)

# general linear f test

anova(reduced_model)

sse_reduced = 140967081

dfr = 437

anova (full_model)

sse_full = 62896949

dff = 436

CDI2

fstat = ((sse_reduced - sse_full)/(dfr - dff))/(sse_full/dff)
rejection_region <- qf(0.95, dfr-dff, 440-dfr)
pf (fstat, dfr-dff, 440-dfr, FALSE)

# model fitting

population_density = CDI2$population/CDI2$area

model_1 <- lm(physician ~ population + income + bed, CDI2)

model_2 <- lm(physician ~ population_density + income + senior, CDI2)

plot(model_1)

summary (model_1)

summary (model_2)

round (model_1$coefficients,3)
round (model_2$coefficients,3)

intercept = model_1$coefficients[1]
population = model_1$coefficients[2]
income = model_1$coefficients[3]
bed = model_1$coefficients[4]

# confidence intervals for each estimated coefficient
round(bed + qt(1-(0.05/2),440-3)*(0.0292), 3)
round(bed - qt(1-(0.05/2),440-3)*(0.0292), 3)

round (population + qt(1-(0.05/2),440-3)*(0.0002116),3)
round (population - qt(1-(0.05/2),440-3)*(0.0002116),3)
round (income + qt(1-(0.05/2),440-3)*(0.008773),3)
round(income - qt(1-(0.05/2),440-3)*(0.008773),3)

# prediction
Yhat = intercept + bed*(300) + population*(394000) + income*(8500)
Yhat

# find the VIFs for Model 1
library(caTools)
library(car)

vif (model_1)



