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I) Introduction:
The dataset, CDI2, consists of numerical data that consists of 7 variables, with a sample size of 440 observations.

Population (X1) is the estimated total population, Income (X2) is the total personal income in dollars, Physician is
the number of professionally active non-federal physicians, Bed (X3) is the total number of beds, cribs, and
bassinets, Area (X4) is the land area in square miles, Senior (X5) is the percent of population aged 65 years old or
older, Crime (X6) is the total number of serious crimes, and. Our goal is to predict the number of active physicians
in a county (Y) using a multiple linear regression model. With 6 variables available to predict Y, we will
determine which variables are the most significant to build the best model. By comparing each model, we will
determine which multiple regression model is the best to predict the number of physicians.

II) Summary:
We first conduct exploratory data analysis to inspect the individual data types of each variable, as well as the initial

relationship between each predictor variable and the response variable. We observed five number summaries,
means, and standard deviation values. We observe high standard deviations for each variable except for Senior,
indicating that values are generally more spread out away from the mean. We also observe extremely high
maximum data points compared to the third quartile of each variable, indicating the presence of possible outliers
in our dataset.

We also analyze the relationship between each variable with one another by use of a correlation plot and a correlation
matrix. From both the correlation plot and the correlation matrix, we see that there is a strong positive linear
correlation between response Physician and predictors Population, Bed, Crime, and Income, indicating that these
predictors could be the best to fit a multiple linear regression model. However, we also observe strong correlation
between the predictor variables, indicating that there may be high multicollinearity present, which could make
interpretation of coefficients used in the regression model more difficult.

III) Variable Selection:
We will be using base multiple linear regression model:
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We can use the extra sum of squares to determine the coefficients of partial determination to measure the effect of an
added predictor variable in addition to other variables (in our case, the base model). Looking at the table with all
of the coefficients of partial determination, we see that adding the variable Bed is the best for the multiple linear
regression model, as the highest was Y2

3|1,2 = 0.554. Furthermore, a General Linear F Test to test the hypotheses
H0: �3 = 0 vs. HA: �3 ≠ 0 , with a significance level of α = 0.0002. Thus, we reject the null hypothesis and we
conclude that the full model, or the model with the predictor Bed is a better fit.

IV) Model Comparison and Fit:
We are given two proposed models:
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Looking at the R2, or coefficient of determination values for each model, we can see that Model 1 has a higher R2 value of
0.955. Since our number of regressors is the same in both models, we do not need to use the R2

adj value to compare. Thus,
we will continue and inspect Model 1 further by performing diagnostics.
V) Model Diagnostics:
Using the Proposed Model 1, with Population, Income, and Bed as predictors for our best model, we performed model

diagnostics to see if the assumptions of the Normal linear regression hold, as well as detecting the presence of
outliers and high leverage points in our dataset. The assumptions we test for are:

1) Error terms are independent



2) Error terms are normally distributed
3) Error terms have constant variance (homoscedasticity)

When assessing independence of error terms, we created a residual index plot, and observed a pattern present in the
plotted values: as index increases, errors become more centered around 0. This indicates that the error terms may
not be independent of each other.

When assessing normality of error terms, we created a Normal Q-Q plot, and observed that plotted values do not follow
the straight line. Although error terms seem to be symmetrical about the center, plotted values show greater
deviations at the ends. This, in addition to the small Shapiro-Wilks p-value, suggests a non-Normal distribution.

When assessing constant variance of error terms, we created a plot of residuals vs. fitted values, and observed that
residuals seem to cluster around smaller fitted values, before becoming less frequent as fitted values become
larger. We also observe the presence of possible outliers in this plot, as there seem to be a few points that deviate
from the mean. In addition, the small Fligner-Killeen Test p-value indicates there is not constant variance.

To detect for possible outliers, we looked for any studentized residuals greater than 3 and high leverage points. We found
12 possible outliers in our dataset with the studentized residuals and 55 possible high leverage points. We will be
considering the studentized residuals as our outliers as it removes a lesser proportion of the dataset, at 2.727%.

We can also assess if the model has multicollinearity by looking at the VIFs, or variance inflation factors. The variables
Population and Income have VIFs that are higher than 10, thus the Population and Income variable are likely
correlated with other predictor variables in the model. A solution would be to remove the variables from the
model.

Based on our diagnostics, we conclude that the assumptions of the Normal linear regression do not hold for our chosen
model. However, we will continue to use this model for interpretation and prediction.

VI) Interpretation:
When estimated total population increases by 1 unit, we expect the number of physicians to decrease by -0.002 on

average, holding all other predictor variables constant.
When total personal income increases by 1 unit, we expect the number of physicians to increase by 0.138 on average,

holding all other predictor variables constant.
When total number of beds, cribs, and bassinets increases by 1 unit, we expect the number of physicians to increase by

0.487 on average, holding all other predictor variables constant.
We do not interpret our intercept of -89.105, as in reality, it would be impossible to have a negative number of physicians.
The R2 value of 0.955 indicates that 95.5% is the proportionate reduction of total variation in Y associated with the use of

the set of X variables, Population, Income, and Bed. The partial coefficient of determination Y2
3|1,2 = 0.554

indicates the proportion of decrease in SSE when the X3 variable is added to the model with X1 and X2.
We are 95% confident that the estimated coefficient for population is between (-0.002, -0.001), the estimated coefficient

for income is between (0.121, 0.155), and the estimated coefficient for bed is between (0.429, 0.544). Since all
coefficients do not include 0, the estimates are significant.

VII) Prediction
, X1 = 394000, X2 = 8500, X5 = 300Ŷ
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Using the estimated coefficients, we found the predicted value for physicians to be 509.559, or 509 physicians.
VIII) Conclusion:
Based on our findings, we found the multiple linear regression model between response variable Physician and predictor

variables Population, Income, and Bed to be our statistically best model, with its high R2 compared to other
models.

However, limitations of our model include strong multicollinearity, as well as the presence of outliers and high leverage
points, that could make interpretation of our model difficult.



Tables/Plots

I) Data Preparation:
X1 = Population
X2= Income
X3= Bed
X4= Area
X5= Senior
X6= Crime
i) Correlation matrix:

Numerical Matrix:
physician area population senior bed crime income

physician 1.000 0.078 0.940 -0.003 0.950 0.820 0.948
area 0.078 1.000 0.173 0.006 0.073 0.129 0.127
population 0.940 0.173 1.000 -0.029 0.924 0.886 0.987
senior -0.003 0.006 -0.029 1.000 0.053 -0.035 -0.023
bed 0.950 0.073 0.924 0.053 1.000 0.857 0.902
crime 0.820 0.129 0.886 -0.035 0.857 1.000 0.843
income 0.948 0.127 0.987 -0.023 0.902 0.843 1.000

Visual Matrix:



ii) Numerical Summaries

a. Five Number Summary

physician area population senior bed crime income

min 39.0 15.0 100043 3.000 92.0 563 1141

1st Qu. 182.8 451.2 139027 9.875 390.8 6220 2311

Median 401.0 656.5 217280 11.750 755.0 11820 3857

3rd Qu. 1036.0 946.8 436064 13.625 1575.8 26280 8654

Max 23677.0 20062.0 8863164 33.800 27700.0 688936 184230

b. Mean and Standard Deviations

Physician Area Population Senior Bed Crime Income

Mean 988.0 1041.4 393011 12.170 1458.6 27112 7869

Standard
Deviation

1789.75 1549.922 601987 3.993 2289.134 58237.51 12884.32

II) Variable Selection

i) Coefficients of Partial Determination

Y2
3|1,2 Y2

4|1,2 Y2
5|1,2 Y2

6|1,2

0.554 0.029 0.004 0.007

ii) Summary of R2 Values

Model 1 Model 2

R2 0.955 0.912

R2
adj 0.955 0.911



iii) Estimation of Coefficients

Intercept Population Income Bed

Model 1 -89.105 -0.002 0.138 0.487

Intercept Population
Density =
Population/Area

Income Senior

Model 2 -170.574 0.096 0.127 6.340

iv) Confidence Interval for Model 1

�hat1 (Population) (-0.002, -0.001)

�hat2 (Income) (0.121, 0.155)

�hat3 (Bed) (0.429, 0.544)



III) Model Diagnostics

i) Assessing Independence

ii) Assessing Normality



iii) Assessing Constant Variance

iii) Hypothesis Tests for Constant Variance and Normality of Errors

Fligner-Killeen Test Shapiro-Wilks Test

P-value < 0.00000000000000022 < 0.00000000000000022

iv) VIFs - Variance Inflation Factor

Population Income Bed

Variance Inflation
Factor - VIF

49.365 38.877 6.977



v) Outliers

i) Method: Studentized Residuals

ii) Method: High Leverage Points



R Appendix

knitr::opts_chunk$set(echo = FALSE, comment = NA)
options(scipen = 999) #Remove the scientific notation
#### LOADING IN DATASET ####
library(readr)
CDI2 <- read_csv("CDI2.csv")
#### SUMMARY ####

# Correlation matrix
library(corrplot)
round(cor(CDI2),3)
corrplot(cor(CDI2))

# Numerical Summaries
summary(CDI2)
lapply(CDI2, sd)
#### MODEL COMPARISON & FIT ####
model_1 = lm(physician ~ population + income + bed, data = CDI2)
CDI2$pdensity = CDI2$population/CDI2$area
model_2 = lm(physician ~ pdensity + senior + income, data = CDI2)
summary(model_1)
summary(model_2)
#### DIAGNOSTICS ####

# Assessing Independence
plot(model_1$residuals,main = "Residual Index plot",xlab = "Index",ylab = "residuals",pch = 19, col = "purple")
abline(h = 0, lty = 2)

# Assessing Normality
# Normal Q-Q Plot

qqnorm(model_1$residuals)
qqline(model_1$residuals)

# Shapiro-Wilks Test
the.SWtest = shapiro.test(model_1$residuals)
the.SWtest

# Assessing Constant Variance
# Plotting Errors vs. Fitted Values

library(ggplot2)
CDI2$ei = model_1$residuals
CDI2$yhat = model_1$fitted.values
qplot(yhat, ei, data = CDI2) + ggtitle("Errors vs. Fitted Values") + xlab("Fitted Values") +

ylab("Errors") + geom_hline(yintercept = 0,col = "purple")
# Formal Testing

Group = rep("Lower",nrow(CDI2))
Group[CDI2$physician < median(CDI2$physician)] = "Upper"
Group = as.factor(Group)
CDI2$Group = Group
the.FKtest= fligner.test(CDI2$ei, CDI2$Group)
#### OUTLIERS ####

# Leverage
p = 4
h = hatvalues(model_1)
n = 440
leverage = which(h > (p+1)/n)

# Studentized Residuals
sei = rstudent(model_1)
outliers = which(abs(sei) > 3)

# Table of outliers and leverage points
CDI2 <- read_csv("CDI2.csv")
outlier_table = CDI2[outliers,]
outlier_table$row = outliers
leverage_table = CDI2[leverage,]
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leverage_table$row = leverage
knitr::kable(outlier_table)
knitr::kable(leverage_table)

2



# find the best variables to include using the partial Rˆ2
CDI2 <- read_csv("Downloads/CDI2.csv")
base_model <- lm(physician ~ population + income, data = CDI2)
model1 <- lm(physician ~ area + population + senior + bed + crime + income, data = CDI2)
model2 <- lm(physician ~ population + income + senior, data = CDI2)
model3 <- lm(physician ~ population + income + crime, data = CDI2)
model4 <- lm(physician ~ population + income + bed, data = CDI2)
model5 <- lm(physician ~ population + income + area, data = CDI2)

anova(base_model)

ybar = mean(CDI2$physician)
SSTO = sum((CDI2$physician - ybar)ˆ2)
SSE = 140967081

# partial senior
SSR_senior_population_income = sum((fitted(model2) - ybar)ˆ2)
SSR_population_income = sum((fitted(base_model) - ybar)ˆ2)

# partial crime
SSR_crime_population_income = sum((fitted(model3) - ybar)ˆ2)

# partial bed
SSR_bed_population_income = sum((fitted(model4) - ybar)ˆ2)

# partial area
SSR_area_population_income = sum((fitted(model5) - ybar)ˆ2)

# partial senior given population and income
#ssr(senior|population,income)/sse(population,income)
#ssr(senior|population,income) = ssr(senior,population,income)-ssr(population,income)
round((SSR_senior_population_income - SSR_population_income)/SSE,3)

# partial crime given popualtio and income
#ssr(crime|population,income)/sse(population,income)
#ssr(crime|population,income) = ssr(crime,population,income) - ssr(population,income)
round((SSR_crime_population_income - SSR_population_income)/SSE,3)

# partial bed given population and income
#ssr(bed|population,income)/sse(population,income)
#ssr(bed|population,income) = ssr(bed,population,income) - ssr(population,income)
round((SSR_bed_population_income - SSR_population_income)/SSE,3)

# partial area given pouplation and income
#ssr(area|population,income)/sse(population,income)
#ssr(area|population,income) = ssr(area,population,income) - ssr(population,income)
round((SSR_area_population_income - SSR_population_income)/SSE,3)

#
# we want to check if the model with bed is better than the base model
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reduced_model <- lm(physician ~ population + income, data = CDI2)
full_model <- lm(physician ~ population + income + bed, data = CDI2)

# general linear f test
anova(reduced_model)
sse_reduced = 140967081
dfr = 437
anova(full_model)
sse_full = 62896949
dff = 436
CDI2
fstat = ((sse_reduced - sse_full)/(dfr - dff))/(sse_full/dff)
rejection_region <- qf(0.95, dfr-dff, 440-dfr)
pf(fstat, dfr-dff, 440-dfr, lower.tail = FALSE)

# model fitting
population_density = CDI2$population/CDI2$area
model_1 <- lm(physician ~ population + income + bed, data = CDI2)
model_2 <- lm(physician ~ population_density + income + senior, data = CDI2)

plot(model_1)
summary(model_1)
summary(model_2)
round(model_1$coefficients,3)
round(model_2$coefficients,3)

intercept = model_1$coefficients[1]
population = model_1$coefficients[2]
income = model_1$coefficients[3]
bed = model_1$coefficients[4]

# confidence intervals for each estimated coefficient
round(bed + qt(1-(0.05/2),440-3)*(0.0292), 3)
round(bed - qt(1-(0.05/2),440-3)*(0.0292), 3)
round(population + qt(1-(0.05/2),440-3)*(0.0002116),3)
round(population - qt(1-(0.05/2),440-3)*(0.0002116),3)
round(income + qt(1-(0.05/2),440-3)*(0.008773),3)
round(income - qt(1-(0.05/2),440-3)*(0.008773),3)

# prediction
Yhat = intercept + bed*(300) + population*(394000) + income*(8500)
Yhat

# find the VIFs for Model 1
library(caTools)
library(car)
vif(model_1)
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